Causes of fire accidents on overhead cables

Now the use of Aerial Bundle Cable has become more and more extensive, but with its popularity in the national power supply lines, some of its safety problems have gradually attracted people’s attention, especially in recent years, the  cable fire accidents reminds people to pay more attention to when using this kind of cable. So, what are the causes of fire accidents of overhead cables?

1. The nominal conductor cross section of cable core does not meet the requirements. Generally, the specified nominal interface is larger than the actual cable produced, and the cable whose nominal value deviates from the standard will have larger unit current density. In its working process, the cable is easy to cause fire accident because it can not generate heat normally.

2. (ABC)XLPE  Insulated cable production process is poor. Although not every manufacturer is like this, it is inevitable that some businesses in the market will not operate strictly according to the standards in the process of cable production in order to seek personal interests. Even some businesses will use some low-quality products to make rough, resulting in the final production of the cable because the quality is not up to standard, causing fire in the process of use.

3. The material of the cable is impure or unqualified. The core wire of the cable is generally made of some copper or aluminum conductive materials, and many businesses often use unqualified or insufficient purity materials in the production process, which will lead to the reduction of power due to the presence of more impurities. Therefore, the materials used as core wires must be some high-quality electrolyte materials, mainly copper and aluminum.

4.Improper transportation. Most cables are subject to strict quality inspection before leaving the factory, but in the process of transportation, due to the lack of proper protection measures, it is squeezed and collided, resulting in the damage of insulation layer or the breakage of internal core wire

5. The composition of the insulating material does not meet the requirements or the processing is poor. We know that the outside of the cable is generally wrapped with a kind of insulating material. If the quality of the insulating material is unqualified, it will reduce its own withstand voltage performance in the process of use, and will form unqualified resistance value. In addition, long-term use will also shorten its service life, it is easy to have some short-circuit faults and cause fire.

Analysis of XLPE ACWU90 AC90 Cable Waterproof Structure

Cable waterproof structure type:
For XLPE ACWU90 AC90 Cable, there are usually the following waterproof structures:
1. For single-core cables, wrap a semiconducting resistance hose on the insulation shield of the cable, wrap a common water blocking tape outside the metal shield, and then squeeze the outer sheath. The outer sheath material can be ordinary For PVC, HDPE material with radial water blocking function can also be used, depending on other performance requirements of the cable. For three-core cables, in order to ensure the full contact of the metal shield, only the single-conductance resistance hose is wrapped outside the insulating shield, and the water blocking tape is no longer wrapped outside the metal shield. Water blocking filling, inner lining and outer sheath materials are the same as those described in single-core cables.


2. The aluminum-plastic composite tape layer is longitudinally wrapped inside the outer sheath or inner lining layer as a waterproof layer.
3. Squeeze the HDPE outer sheath directly on the outside of the cable.

Cable waterproof structure type:
For XLPE insulated power cables, there are usually the following waterproof structures:
1. For single-core cables, wrap a semiconducting resistance hose on the insulation shield of the cable, wrap a common water blocking tape outside the metal shield, and then squeeze the outer sheath. The outer sheath material can be ordinary For PVC, HDPE material with radial water blocking function can also be used, depending on other performance requirements of the cable. For three-core cables, in order to ensure the full contact of the metal shield, only the single-conductance resistance hose is wrapped outside the insulating shield, and the water blocking tape is no longer wrapped outside the metal shield. Water blocking filling, inner lining and outer sheath materials are the same as those described in single-core cables.


2. The aluminum-plastic composite tape layer is longitudinally wrapped inside the outer sheath or inner lining layer as a waterproof layer.
3. Squeeze the HDPE outer sheath directly on the outside of the cable.
For PVC XLPE Insulated Power Cable, the metal sheath is mainly used to make the cable meet the waterproof requirements. The most important feature of the metal sheath is that it is completely impermeable, so the cable with the metal sheath has very good radial water blocking performance. The main types of metal sheaths are: hot-pressed aluminum sleeve, hot-pressed lead sleeve, welded corrugated aluminum sleeve, welded corrugated steel sleeve, and cold drawn metal sleeve.


Cable waterproof form:
Cable waterproofing methods are generally divided into longitudinal water blocking and radial water resistance. Water blocking yarn, water blocking powder and water blocking tape are commonly used in longitudinal water blocking. Their water blocking mechanism is that these materials contain a material that can swell in contact with water. When water flows from the cable end or from the sheath After entering the defect, this material will quickly expand with water to prevent further diffusion of water along the longitudinal direction of the cable, thus achieving the purpose of longitudinal waterproofing of the cable. Radial water resistance is mainly achieved by extruding HDPE non-metallic sheath or hot pressing, welding, and cold drawing metal sheath.
Cable waterproof test basis:
The cable waterproof test method, the cable longitudinal water resistance performance can be tested and judged by the IEC 60502-1997 ANNEX D (normative) or GB/T 12706.2-2002 Appendix D (standard catalog) water permeability test; and the cable radial water resistance Performance, currently is mainly determined by indirect methods, such as checking whether the HDPE non-metal sheath or non-metal sheath is defective. If these sheaths are determined to be intact, then the cable is considered to have good radial water resistance. performance. However, many users of this method have raised some questions, caused some disputes, and lacked convincing power. Therefore, cable manufacturers and users now urgently need a test method to determine the radial water blocking performance of the cable. This can avoid disputes between manufacturers and users about the cable’s radial water blocking performance due to the lack of a radial water blocking test method.

 

Basic cable performance test

1. Inspection method
Routine test: It is an experiment conducted by the manufacturer on all finished cables. Its purpose is to check whether the quality of the product meets the requirements of the technical conditions in order to find accidental defects in the manufacturing process. It is a non-destructive experiment, such as the DC resistance of the wire and the insulation resistance time. And withstand voltage test, partial discharge detection, etc.
Type test: It is the manufacturer who regularly conducts comprehensive performance inspection of the product, especially for a new product before it is finalized for mass production, or the structure, material and main process of a product have changed, which may affect the performance of the cable Time. Pass type test: It can be tested whether the product can meet the requirements of operation, and can be compared with the old product. Such as thermal aging performance of insulation and sheath, long-term stability test of power cable, etc.
Acceptance test: It is an acceptance test performed on the cable after the cable is installed and laid in order to check the installation quality and find possible damage during the construction. Such as withstand voltage test after installation.

2. Test items
2.1 Measurement of DC resistance of wires
The conductive core of the wire and cable mainly transmits electric energy or electric signal. The resistance of the wire is the main indicator of its electrical performance. When the AC voltage is applied, the core resistance is larger due to the skin effect and the adjacent effect surface than when the DC voltage is applied, but the difference between the two is very small when the electric eye frequency is 50Hz. The current standard stipulates That can only require the detection of whether the DC resistance or resistivity of the core exceeds the value specified in the standard. Through this inspection, certain defects in the production process can be found: such as wire breakage or partial single wire breakage; Meet the standard; the length of the product is incorrect, etc. For aerial bundled cables 1418 standard, you can also check whether it will affect the allowable current carrying capacity of wire and cable products during operation.
There are single-arm DC resistance method and double-arm DC bridge method to measure the DC resistance of conductors. The accuracy of the latter is higher than that of the former. The test procedure is also more complicated than the former.

2.2 Test of insulation resistance
Insulation resistance is an important indicator reflecting the insulation characteristics of wire and cable products. It is closely related to the product’s electrical strength, dielectric loss, and the gradual deterioration of insulating materials under working conditions. For communication cables, low insulation resistance between wires will also increase loop attenuation, crosstalk between loops, and long-distance power supply leakage on conductive cores. Therefore, insulation resistance should be higher than the specified value.
Defects in the process can be found by measuring the insulation resistance, such as the insulation is dry and impermeable or the sheath is damaged and damp; the insulation is contaminated and conductive impurities are mixed in; the insulation layer is cracked due to various reasons. In the operation of aerial bundled cables(abc) sans1418, the insulation resistance and leakage current are often tested as the main basis for continued safe operation.
At present, in addition to the ohmmeter (shaking meter), the current measurement of the insulation resistance of wires and cables is the galvanometer comparison method and the high resistance meter method (voltage-current method).

How to identify poor quality Aerial Bundled Cable

1. Look closely at the label printing, the handwriting is blurred and the address is unknown. It means to look at the printed words on the label and the insulating skin. If there are typos, or the printing is of different shades, or the words are blurred, pay attention to it.
2. Use your fingernails to mark and flick the line , and the line will be cut off. Refers to the use of nails to scratch and pinch the insulating skin. The ones that can be scratched or pinched are generally inferior threads.

3.Twist the insulation skin with your hands, and the color will fade and the characters will be of poor quality. Refers to rubbing the insulating sheath with your fingers. Some inferior insulated wires are easy to fade, especially the red wire. This problem occurs. After rubbing, the color of the thread is left on the finger or the words printed on the thread are wiped off Generally inferior quality Aerial Bundled Cable

4. Repeatedly bend the insulated wire and break (ABC)SANS 1418 Standard three to four times. Refers to repeated bending of insulated wires. Inferior wires are generally of poor quality, and the insulation layer will break after bending 3 to 4 times.

 

5. Use fire to ignite the wire insulation and spontaneously ignite away from the open flame. It refers to the inferior wire that ignites the insulating layer and can ignite spontaneously after leaving the open flame.

6. ​​Aluminum and copper are commonly used for wire cores, and the color becomes darker and lighter. It means to look at the color of the core, the color of inferior thread is gray and without metallic luster.

7, finely measure the inner diameter and outer diameter, and look at the pine when weighing. It means that if it is not determined by the above 6 methods, the outer diameter and core diameter of the insulated wire can also be measured. The allowable error is ±10%. If the measured value exceeds the allowable error, it is basically a low-quality insulated wire.

How to prevent the electric power cable fire

The selection of XLPE insulated power cables should follow the following principles: the rated voltage should be greater than or equal to the voltage at the installation point.          

1. Short-circuit fault caused by insulation damage

The protective layer of the cable will be damaged during the laying process, or the insulation layer of the cable will be damaged by mechanical damage during the operation, resulting in interphase or damage to the protective layer of the cable, and the arc will cause the protection of the insulating material and the outer layer of the cable. The layer material burns and catches fire.

2. Long-term overload operation of the cable

Long-term overload operation, the working temperature of the cable insulation material exceeds the higher allowable temperature of normal heating, thereby accelerating the insulation aging of the cable. This insulation aging phenomenon usually occurs in the entire cable line. Due to the aging of the cable insulation layer, the insulation material will lose or reduce the insulation layer and mechanical properties, so it is easy to break and catch fire, and even burn in many places along the entire length of the cable.

3. Insulation breakdown of the intermediate junction box

The intermediate joint of cable joint box is oxidized, heated and gummed during operation due to loose crimping, weak welding or improper joint material selection; When making the cable intermediate joint, the quality of insulating agent poured into the intermediate joint box does not meet the requirements. When pouring the insulating agent, there are air holes in the box and the cable box is poorly sealed and damaged, which causes moisture leakage. The above factors can cause insulation breakdown, form short circuit, and cause cable explosion and fire.

4.Cable head burning

Because the surface of the cable head is contaminated by moisture, the porcelain sleeve of the power cable head will break, and the distance between the wires will be too small, which will cause arcing and fire, which will cause the cable head and the surface of the cable to be insulated. The insulation of the outlet is burning.

5. Cable fire caused by external fire and heat source

For example, the spread of fire in the fuel system, the explosion of the fuel circuit breaker, the spontaneous combustion of pulverized coal in the boiler crushing system or coal conveying system, the baking of high-temperature steam pipes, the chemical corrosion of acid and alkali, welding sparks, etc. may cause the cable to catch fire.

Wire and cable products are mainly divided into five categories

1. Bare wires and bare conductor products

The main features of this category of products are: pure conductive metal, no insulation and sheath, such as steel core aluminum stranded wire, copper-aluminum busbar, electric locomotive wire, etc.; processing technology is mainly pressure processing, such as melting, rolling, drawing The products are mainly used in suburbs, rural areas, user main lines, switch cabinets, etc.

2. Power cable

The main features of this type of product are: squeeze (wind) the insulation layer outside the conductor, such as overhead insulated cables, or stranded several cores (corresponding to the phase, neutral and ground wires of the power system), such as overhead insulated cables with more than two cores , Or add a sheath layer, such as plastic/rubber wire and cable. The main process technologies include drawing, stranding, insulation extrusion (wrapping), cable formation, armoring, sheath extrusion, etc. The different process combinations of various products have certain differences.

The products are mainly used in the transmission of strong electric energy in power generation, distribution, transmission, transformation, and power supply lines, with large current (tens of amperes to several thousand amperes) and high voltage (220V to 500kV and above).

, Wire and cable for electrical equipment

The main features of this type of products are: a wide range of varieties and specifications, a wide range of applications, with more voltages of 1kV and below, and constantly deriving new products in the face of special occasions, such as fire-resistant cables, flame-retardant cables, low smoke and halogen free Smoke and low halogen cables, termite-proof, mouse-proof cables, oil-resistant/cold-resistant/temperature-resistant/wear-resistant cables, medical/agricultural/mining cables, thin-walled cables, etc.

4. Communication cables and optical fibers (a brief introduction)

With the rapid development of the communications industry in the past two decades, products have also developed at an astonishing speed. From the simple telephone and telegraph cables in the past, it has developed to thousands of pairs of voice cables, coaxial cables, optical cables, data cables, and even combined communication cables.

The structure size of this kind of product is usually small and uniform, and the manufacturing precision is high.

5. Magnet wire (winding wire)

Mainly used in various motors, instruments, etc.

Derivatives/New Products of Wire and Cable

Derivatives/new products of wire and cable are mainly due to different application occasions, different application requirements, convenience of equipment and requirements of equipment cost reduction, etc., and the use of new materials, special materials, or changing product structure, or improving process requirements, or different Varieties of products are combined.

Use different materials such as flame-retardant cables, low-smoke zero-halogen/low-smoke abc cables, termite-proof, mouse-proof cables, oil/cold/temperature-resistant cables, etc.;

Change the product structure such as: fire-resistant cable, etc.;

Improve process requirements such as: medical cables, etc.;

Combination products such as OPGW, etc.;

It is convenient to install and reduce equipment costs, such as prefabricated branch cables.

Smart grid spawns smart cables, experts may have temperature sensing function

What should a “smart cable” look like? Some experts gave an example of whether the wire and cable can understand the conveying capacity through the color of the surface, can have a temperature sensing function, and the color display can be different at different temperatures. For example, if the wire is transported more than 1000 A, the color of the wire will change from white to other colors if the transmission capacity is exceeded. If this can be achieved, it will be of great help to the operation of the line. Another example is insulation, which has a self-recovery function in the case of discharge, and the defect can be recovered by adding other materials. It is hoped that enterprises can work hard to develop such products, which will also play a great role in the upgrading and innovation of enterprises.

Some experts believe that the purpose of my country’s construction of a strong smart grid is to ensure the safety and reliability of the grid, so that people can use it more conveniently and at ease. This requires more reliable grid-related equipment. “The measure to reduce the occurrence of cable failures is to use qualified cables, set up safe cable channels and lay them in accordance with regulations, check them regularly, and conduct state assessments.” said Chen Peiyun, chief engineer of Qingdao Hancable Co., Ltd., currently laying in ultra-high voltage cables Some fiber optic cables can detect its partial discharge and temperature through the fiber optic cable, which is equivalent to having a certain perception effect. These are smart cables.

The double-ring network power cable  supply in big cities, the increasingly narrow space corridors, and the increase in the rate of underground cables in the city center have brought great demand for cables. The maintenance-free requirements of cables and the attention to the life of insulation withstand voltage put forward higher requirements on the insulation medium, performance indicators, and brand reputation of distribution cables.

With the increasing application of cables, coupled with the improvement of the power supply reliability requirements of the smart grid, cable faults occur from time to time, and there is an urgent need to study new and smarter cable detection technologies. “Diagnosing and evaluating the status of cables is an important technical means for rationally arranging cable replacement and ensuring the safety and reliability of power supply. It is also an extremely important part of effective cable management in smart grids.” National Wire and Cable Quality Supervision and Inspection Center Director Wu Changshun said.

Some cable companies have seen the business opportunities brought by smart cables and want to dig money in the field of smart cables. Recently, the intelligent ultra-flexible fireproof cable successfully developed by Far East Smart Energy has passed the full performance type test of the “National Fireproof Building Material Quality Supervision and Inspection Center” and the “National Wire and Cable Quality Supervision and Inspection Center”. The comprehensive performance has been appraised by relevant experts. As an internationally advanced level, the products have obtained national invention patents and were selected into the list of “the first batch of Jiangsu high-tech products in 2014”.

Requirements of Power Cable Cross Section

Power cable section
The selection of power cable conductor cross-section should meet the following requirements:
1 The temperature of the cable bare conductor under the action of the maximum operating current shall not exceed the allowable value of the service life of the cable. Cable conductor work of continuous working loop
The temperature should meet the requirements of Appendix A of this code.
2 The temperature of the cable conductor under the action of the maximum short-circuit current and short-circuit time shall comply with the provisions of Appendix A of this code.
3 The voltage drop of the connected circuit under the maximum operating current shall not exceed the allowable value of the circuit.
4 In addition to meeting the requirements of paragraphs 1 to 3 above, the cross-section of power cables of 10kV and below should be based on the initial investment of the cable and the operation during its service life.
The principle selection of comprehensive cost economy. The selection method of economical current cross-section for power cables of 10kV and below should comply with the regulations in Appendix B of this code.
5 The minimum cross-section of multi-core power cable conductors, copper conductors should not be less than 2.5mm2, and all aluminum conductors should not be less than 4mm2.
6 For cables laid underwater, when the conductor is required to withstand the tensile force and is reasonable, the cross section can be selected according to the tensile requirements.

Commonly used cables of 10kV and below shall determine the allowable minimum cross-section of the cable conductor at 100% continuous working current, which should meet the requirements of Appendix C and Appendix D of this code. The current carrying capacity shall be greater than The working current of the loop.
1 Difference in ambient temperature.
2 The difference in soil thermal resistance coefficient when directly buried.
3 The influence of multiple parallel cables.
4 The influence of sunlight on outdoor overhead laying without shading.

Except for the conditions specified in Article 3.7.2 of this code, when the cable determines the minimum allowable cross-section of the cable conductor at 100% continuous working current, it shall be verified by calculation or test, and the calculation content or parameter selection shall meet the following requirements:
1 Non-coaxial cables used in power supply circuit cables with higher harmonic loads or intermediate frequency load circuits should be included in the skin effect and the increase in proximity effect
And other additional heating effects.
2 For single-core high-voltage cables that are cross-connected and grounded, when the three sections in the unit system are of unequal length, the effect of the additional loss and heating of the metal layer should be included.
3 The cables laid in the protective tube shall be included in the influence of thermal resistance; the cables with different holes in the pipe shall also be included in the influence of mutual heating factors.
4 Cables laid in closed, semi-enclosed or ventilated refractory trough boxes should be included in the heat resistance of the type of material and the thickness and size of the box.
The impact of increased resistance.
5 When the thickness of the fireproof coating, tape and other covering layer applied on the cable is greater than 1.5mm, the thermal resistance should be included.
6 When the cable in the trench is buried with sand and there is no regular water supplement, a thermal resistance coefficient greater than 2.0K·m/W should be selected according to the sand quality to include the influence on the increase of the thermal resistance of the cable.

When calculating the continuous allowable current-carrying capacity of the cable whose conductor working temperature is greater than 70℃, the following requirements should be met:
1 When a large number of such cables are laid in tunnels and shafts without mechanical ventilation, the impact on environmental temperature rise should be included.
2 Cables are directly buried in dry or moist soil. Except for the implementation of soil replacement treatment to avoid water migration, the soil thermal resistance coefficient is not
It should be less than 2.0K·m/W.

Structure Analysis of 10kv XLPE Power Cable

XLPE power cable has good electrical and corrosion resistance. It is easy to install and easy to operate and maintain. It is widely used in 10 kV rural distribution networks. However, once it fails, it is difficult to repair and find. Combining the actual operation and work, focus on the analysis of the principle and structure of the cross-linked cable.

1. Analysis of insulation principle of cross-linked polyethylene material (XLPE)
Polyethylene is used as the basic insulating material, and chemical and physical cross-linking methods are used to convert the high molecular compound polyethylene from a linear molecular structure to a three-dimensional network structure of cross-linked polyethylene. It completely maintains the high electrical and physical properties of polyethylene, such as: high breakdown strength, large insulation resistance, low dielectric loss tangent value, etc. At the same time, due to the cross-linking process, it has aging resistance, heat resistance, mechanical properties, The corrosion resistance has been greatly improved.

The XLPE cables used daily are mostly chemical cross-linking method-inert gas cross-linking. The polyethylene material with peroxide (commonly used dicumyl) crosslinking agent is used. After three-layer co-extrusion, it continuously and uniformly passes through a sealed crosslinking tube filled with high temperature and high pressure nitrogen. The peroxide is thermally decomposed to produce Free radicals, free radicals can combine with hydrogen atoms in polyethylene, and polyethylene molecules that have lost hydrogen atoms unite to form cross-linked polyethylene to complete the cross-linking process.

However, XLPE as a polymer also has its inherent defects. The macromolecular solid structure of the polymer makes it easy to accumulate “space charge” inside. Space charge is also called trap charge, that is, the part of the charge that stays in the medium after being trapped. , Can also refer to the polarization charge caused by uneven polarization. The formation of traps is due to pollution in the production process, introduction during mechanical processing or generated during application, but electrode injection is considered to be the main reason for the formation of space charges. The space charge is generally distributed in the medium impurities, physical defects and between polymer molecular chains. Factors such as residual charge in the production process, high electrode injection or polarization caused by impure materials will cause the accumulation of space charge, and these factors are inevitable in actual production. Space charge is very harmful to XLPE cable insulation.

In addition, due to the network molecular structure of XLPE, it has a greater water permeability problem. When the XLPE insulator invades a trace amount of moisture, it will cause the formation of water branches in the insulator, and at the same time cause a high electric field similar to the gas free process, causing insulation damage. The diameter of the water branches is generally only a few microns, and there are many microscopic small water drop gaps. composition. When voltage is applied to the cable, under the action of a strong electric field, water branches will evolve into electrical branches to induce insulation breakdown. It can be seen that the problem of water permeability is the flaw of the XLPE material, and XLPE is the main insulation, so it is necessary to strictly prevent the intrusion of the cable during installation and use.

2. Structural analysis of XLPE power cable

The cross-linked cable is mainly composed of a core conductor, an insulating layer and a protective layer. The core conductor is located in the center, and the insulation shielding layer of the “three-layer co-extrusion” process is on the periphery, which has excellent insulation shielding and heat resistance and heat dissipation performance. The outermost periphery is a protective layer, which is composed of an inner sheath, an armor, and an outer sheath to seal the conductor and the main insulation. This simple structure of cross-linked cable is based on high technology and craftsmanship. Each layer of the structure has special functions and requirements. If a certain layer of structure has a problem, the entire cable will be scrapped. In order to clarify The structural requirements of each layer of the cable, and the principle analysis of each structural part of the cross-linked power  cable are as follows.

(1).  Analysis of core conductor structure

The bare conductor of cable plays the role of transmitting electric energy. When the alternating current passes through the conductor, the skin effect makes the charge density near the surface of the conductor high. Since the electric field intensity on the surface of a conductor is directly proportional to its surface charge density and inversely proportional to the radius of curvature of the conductor surface, the radius of curvature at the edge or tip of the conductor is the smallest, the surface charge density is the largest, the space charge is most likely to accumulate, and the electric field strength is the highest. Local strong electric field discharge is most likely to occur, and this phenomenon is called “edge effect”.

If impurities invade the inner structure of the cable, the impurities will form tips and cause partial discharges, which will eventually lead to breakdown. This is another important reason why no impurities can penetrate into the cable structure.

In order to avoid the “edge effect” harm to the cable insulation, try to make the conductor electric field uniform and reduce the insulation requirements, we should make the conductor into a geometric shape with the largest radius of curvature-round, and make the conductor surface as smooth as possible to avoid The sharp electric field is strong. For this reason, the cross-linked cable core is a multi-core compact round stranded wire. It can be seen that during cable laying and installation, it is necessary to strictly avoid the behavior of damaging the flatness of the internal structure of the cable and destroying the uniform electric field.

(2). “Three-layer co-extrusion” analysis of the inner and outer semi-conductive layer and the main insulating layer

The semiconducting layer is a polymer material with a higher dielectric constant (it is a conductor under a high electric field), which makes up for the stranded cores that cannot be completely rounded, and the uneven electric field on the surface of the cores is uniform. At the same time, it can prevent manufacturing The local high electric field caused by the accidental stab of the core and the introduction of external impurities during the process. It contains substances that quickly capture moisture, which can effectively block moisture from intruding into the insulating layer from inside and outside, prevent moisture from spreading along the core, and prevent the generation of water branches. In addition, the inherent thermal resistance of the polymer can play a role in thermal shielding of separate temperature and increase the current carrying capacity of the cable.

The “three-layer co-extrusion” process is to tightly extrude the inner and outer semiconducting layers and the insulating layer, so that the three layers are tightly combined. This process avoids the local high electric field caused by the intrusion of external impurities (air, moisture, foreign particles, etc.), makes the electric field uniform and smooth, thereby increasing the initial free discharge voltage and greatly improving the insulation strength.

(3). Copper shield and armor

Between the outer semiconducting layer and the inner lining layer, two layers of annealed copper tape are spirally covered to form a cylindrical concentric conductor layer. This is the copper shielding layer, which has good contact with the shielded semiconducting layer, and For the equipotential. During installation, both ends of the copper shielding tape are grounded, so that the outer semi-conductive layer of the cable is always at zero potential, thereby ensuring that the electric field is evenly distributed in the longitudinal direction. When the cable fails, the protective device will act quickly through the ground current or short-circuit current on the copper shielding layer, thereby protecting the non-faulty part of the cable. Note that the length of the copper shielding layer not in contact with the outer semiconducting layer shall not exceed 2 cm after calculation.

The main function of armoring is to increase the longitudinal mechanical stress of the cable, reduce the influence of mechanical force on the cable, and at the same time, it also plays a role in uniform electric field and protection through fault current.

When the cable is subjected to insulation breakdown, lightning strike, operating overvoltage or large fault current flowing in the core, the induced voltage of the metal sheath may cause the inner sheath to break down and cause arcing, and the fault current at this time is not enough When the relay protection is activated, the breakdown phenomenon will gradually increase until the metal sheath is burnt into a hole, which further increases the fault. In order to eliminate this hazard, the metal sheath must be grounded at the terminal.

Power Cable Fire Protection Technology

According to incomplete statistics, there have been more than 100 major accidents caused by cable fires spreading across the country in the past ten years, and more than 320,000 meters of cables have been burned. The restoration and reconstruction work is expensive and time-consuming, and the loss of power supply alone amounts to more than 100. 100 million yuan. The cable fire accident has its special hazards, that is, the failure of the control circuit causes the accident to expand and even damage the main equipment, and it is difficult to repair, and production cannot be resumed for a long time.

Power cables are an important part of the normal operation of power plants and substations. The widespread distribution of cables in power plants and substations, the flammability of cables, the serial ductility of cable fires, and the seriousness of the consequences of cable fires make the fire protection of cables highly valued by power departments, firefighting agencies and scientific research institutions. In view of the frequent occurrence of cable fire accidents, it is necessary to discuss the fire safety measures for cables.

1. Create a good operating environment to avoid accelerated aging and damage of cable insulation
Cable trenches and cable tunnels must have good drainage facilities, such as shallow drainage ditches and water collection wells, and can effectively hold water. If necessary, install automatic start and stop pumping devices to prevent water accumulation and keep the interior dry. The longitudinal drainage slope of cable trenches and tunnels should not be less than 1% to 2%, and should be at least greater than 0.5% to prevent water, corrosive gas or liquid, and flammable liquid or gas from entering. Cable trench, cable tunnel. The cable tunnel should be naturally ventilated, but when the normal load of the cable causes the air temperature in the tunnel to be higher than 40℃~50℃, a combination of natural exhaust and mechanical exhaust can be used for ventilation. The fan of the ventilation system should be interlocked with the fire detector to ensure that the air supply can be automatically stopped in the event of a fire in the tunnel. The cable tunnel shall not be used as the air inlet of the ventilation system.

 

Avoid placing the cable fire door in a normally closed state, using a fire barrier to completely seal the cable, and filling and sealing all gaps in the cable trench cover, which affect the ventilation and heat dissipation of the cable. Moreover, completely enclosing the cable also makes normal inspection of the cable impossible, and the cable failure cannot be found in time.

In addition, there must be complete facilities for preventing the intrusion of rats and snakes to prevent small animals from destroying the insulation cable and causing accidents.

2. Strengthen the preventive test of cables
The preventive test of cables should not only look at the qualified and unqualified test data, but also compare and analyze the data. It can be compared with the test data of the same cable or with the historical test data of this cable to explore the law of the test data. For example, when the DC withstand voltage test is performed, if the measured leakage current value rises faster with the increase of the test voltage value or the increase of the pressure time, or the value increases more than the same cable, or if the The measured data shows an obvious upward trend, or the leakage current imbalance coefficient between the three is relatively large, etc., which should be carefully analyzed. If it is not caused by improper test method, the test voltage can be appropriately increased or the test time can be extended to determine whether the cable meets the conditions for continued operation.

3. It is necessary to strengthen the management and operation monitoring of the production quality of cable heads
According to statistics, cable fire and explosion accidents caused by cable head failure account for about 70% of the total cable accidents. Therefore, it is necessary to strictly control the quality of the materials and workmanship of the cable head. It is required that the service life of the made cable head should not be less than the service life of the cable. The rated voltage level and insulation level of the connector shall not be lower than the rated voltage level and insulation level of the connected cable. The withstand voltage between the insulation pads on both sides of the insulation head shall not be less than 2 times the insulation level of the cable sheath. The form of the connector should be compatible with the environmental conditions set, and should not affect the flow capacity of the cable. Within the range of 2 to 3 meters on both sides of the cable head, fire-resistant tapes shall be used for fire-resisting and flame-retardant cable treatment.

Generally speaking, the cable head is the weak link of the cable insulation, so strengthening the monitoring and management of the cable head is an important part of cable fire protection. The terminal cable head must not be placed in the cable trench, cable tunnel, cable trough box, or cable interlayer. The intermediate cable heads placed in the cable trenches, cable tunnels, cable trough boxes, and cable interlayers must be registered and monitored using a variety of monitoring equipment. When the cable head is found to have abnormal temperature rise or smell or smoke, exit the operation as soon as possible to avoid the cable head from catching fire during operation.

There should be sufficient safety length between the middle cable heads. Two or more cable heads should not be placed in the same position. Tight sealing measures should be taken between the cable heads and other cables.

4. Prevent other equipment from catching fire and igniting the cable
Oil-filled electrical equipment, coal conveying, pulverizing systems, and steam engine oil systems can be ignited by cables. Corresponding measures must be taken for them; the cable trench cover near the oil-filled electrical equipment should be sealed to prevent the oil from flowing into the cable trench to ignite the cable when the equipment fails and catches fire. The dust accumulation on the electric blanket near the coal conveying and pulverizing system should be cleaned regularly to prevent the spontaneous combustion of the pulverized coal from igniting the cable. The cables facing the explosion-proof door of the pulverizing system must be packed in a fire-proof box to prevent the fire-proof door from igniting the cable. The cables under the head of the turbine should be packed in a fire-proof trough box.

5. Use measures such as sealing, blocking, coating, isolation, and wrapping to prevent the cable from spreading

Fire-retardant paint has the characteristics of thin coating, does not affect normal heat dissipation, and can play a good heat insulation and flame retardant effect, but it also has many defects.
Therefore, it is not advisable to apply a large number of fire-retardant coatings to the cable to be flame-retardant. Instead, a large number of methods of sealing, blocking and isolation should be used. When using sealing, blocking, and isolation methods, the following issues should be noted:

(1). Use the methods of sealing, blocking and separating to ensure that the fire of a single cable does not extend to multiple cables. Cables enter cable trenches, cable tunnels, and cable trough boxes; the nozzles of the cable interlayer should be tightly fireproofed to prevent a single cable or a small number of cables from igniting a large number of cables. A fire wall and fire door shall be installed every 60 to 100 meters in cable trenches and cable tunnels. Fire barriers shall be arranged in layers in the shafts. Fire barriers shall be arranged between power cables and control cables. The control cables shall be fully fireproofed. Flame-retardant cables are used to ensure that the main equipment can safely stop running in any emergency. Important cable channels should be equipped with automatic alarm and automatic fire extinguishing devices, such as water spray and water mist fire extinguishing devices, to achieve early detection and early fire fighting.

(2). The tightness and thickness of the fire-proof sealing must be guaranteed. If the fire-proof sealing is not tight, the sealing effect will be lost, especially where the cables are concentrated, it is best to use soft blocking materials to ensure tight sealing. During maintenance and inspection, the damaged blockage should be restored in time. The thickness of the blocking material is not enough, and the fire will pass through the blocking material and burn after the cable catches fire. The thickness of the plugging material should be proportional to the number of cables on the plugging surface, the more the number of cables, the thicker the plugging. The fire door should have a device that automatically closes after a fire occurs.

(3). The fire blocking layer must have sufficient mechanical strength. Because the cable catches fire, especially the electrical short circuit, it will cause the rapid expansion of the air to produce a certain impulse, destroy the fireproof sealing layer with low mechanical strength, and make the fireproof sealing useless.