How to distinguish the quality of photovoltaic line?

Solar energy technology will become one of the green energy technologies in the future. Solar energy cable is becoming widely used in China. In addition to the rapid development of government-supported photovoltaic power plants, private investors are also actively building plants and plan to put them into production and sell them globally. Solar modules. Many countries are still in the learning stage. There is no doubt that in order to obtain the best profits, companies in the industry need to learn from countries and companies that have years of experience in solar energy applications. The construction of cost-effective and profitable photovoltaic power plants represents the most important goal and core competitiveness of all solar manufacturers.


How to choose fiber optic cable for us?
1. Outer: Indoor optical cables generally use polyvinyl or flame-retardant polyvinyl. The appearance should be smooth, bright, flexible and easy to peel off. The outer skin of poor quality optical fiber cable is not smooth and easy to adhere to the tight sleeve and aramid inside.

The PE sheath of the outdoor optical cable should be made of high-quality black polyethylene. After the cable is formed, the outer skin is smooth, bright, uniform in thickness, and free of small bubbles. The outer skin of inferior fiber optic cable is generally produced with recycled materials, which can save a lot of cost. The outer skin of this kind of fiber optic cable is not smooth. Because there are many impurities in the raw material, the outer skin of the made fiber optic cable has many very small pits. water.


2. Optical fiber: Regular optical fiber cable manufacturers generally use grade A cores from large factories, and some low-cost and inferior optical cables usually use grade C, grade D optical fibers and smuggled optical fibers from unknown sources. These optical fibers take a long time to leave the factory due to their complex sources. It is often damp and discolored, and single-mode fibers are often mixed in multimode fibers. Generally, small factories lack the necessary testing equipment and cannot judge the quality of the fiber. Because such optical fibers cannot be distinguished by the naked eye, the common problems encountered in construction are: narrow bandwidth and short transmission distance; uneven thickness and cannot be connected to the pigtail; the optical fiber lacks flexibility and breaks when it is bent.

3. Reinforced steel wire: The steel wire of the outdoor optical cable of the regular manufacturer is phosphated, and the surface is gray. Such steel wire does not increase hydrogen loss, rust, and has high strength after being cabled. Inferior fiber optic cables are generally replaced by thin iron or aluminum wires. The identification method is easy-it is white in appearance and can be bent at will when it is pinched in the hand. The optical fiber cable produced with such steel wire has a large hydrogen loss, and after a long time, the two ends of the hanging optical fiber box will rust and break.

4. Steel armor: regular production companies use double-sided brushed anti-corrosion paint longitudinally wrapped pattern steel strips, inferior optical cables use ordinary iron sheet, usually only one side of the anti-rust treatment.


5. Loose tube: The loose tube of the optical fiber in the optical cable should be made of PBT material, which has high strength, no deformation and anti-aging. Inferior fiber optic cables generally use PVC as the sleeve. The outer diameter of such a sleeve is very thin, and it is flattened by pinching it with the hand. It is a bit like a straw for drinking.

6. Fiber paste: The fiber paste in the outdoor optical cable can prevent the fiber from oxidizing. Due to moisture ingress and dampness, the fiber paste used in inferior fibers is very small, which seriously affects the life of the fiber.


7. Aramid: Also known as Kevlar, it is a high-strength chemical fiber that is currently used most in the military industry. Military helmets and bulletproof vests are produced from this material. At present, only DuPont and the Dutch Akzo can produce them, and the price is about 300,000 tons. Indoor optical cables and power overhead optical cables (ADSS) both use aramid yarns as reinforcements. Because aramid costs are relatively high, inferior indoor optical cables generally have a very thin outer diameter, which can save costs by using fewer strands of aramid. Such optical cables are easily broken when they are threaded through the tube. Because ADSS optical cable determines the amount of aramid fiber used in the optical cable according to the span and wind speed per second, it is generally not afraid to cut corners.